## Data collection

Siemens SMART diffractometer
$\omega$ scans
Absorption correction:
multi-scan (SHELXTL;
Sheldrick, 1994)
$T_{\text {min }}=0.287, T_{\text {max }}=0.560$
9492 measured reflections

## Refinement

Refinement on $F^{2}$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.025$
$w R\left(F^{2}\right)=0.064$
$S=1.120$
5660 reflections
427 parameters
All H atoms refined
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.011 P)^{2}\right.$
$+2.5925 \mathrm{P}]$
where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$
$\Delta \rho_{\text {max }}=1.13 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\min }=-0.67 \mathrm{e}^{-3}$
Extinction correction: SHELXL93 (Sheldrick, 1993)

Extinction coefficient: 0.0000 (2)

Scattering factors from International Tables for Crystallography (Vol. C)
$(\Delta / \sigma)_{\max }=0.001$
Table 1. Selected geometric parameters $\left(\AA^{\circ},{ }^{\circ}\right)$

| $\mathrm{Au}-\mathrm{N}$ | 2.019 (3) | C3-C4 | 1.403 (6) |
| :---: | :---: | :---: | :---: |
| Au-P | 2.2420 (8) | C4-C12 | 1.375 (5) |
| $\mathrm{N}-\mathrm{Cl}$ | 1.336 (4) | C9-C11 | 1.453 (5) |
| $\mathrm{N}-\mathrm{H} 1$ | 0.89 (5) | C9-C14 | 1.496 (5) |
| $\mathrm{O} 1-\mathrm{C} 9$ | 1.247 (4) | $\mathrm{C} 10-\mathrm{C} 13$ | 1.485 (6) |
| O2-C10 | 1.229 (5) | C10-C12 | 1.489 (5) |
| $\mathrm{C} 1-\mathrm{C} 2$ | 1.433 (5) | $\mathrm{C} 11-\mathrm{Cl2}$ | 1.426 (5) |
| C1-C11 | 1.442 (5) | C13-C14 | 1.404 (5) |
| C2-C3 | 1.365 (6) |  |  |
| $\mathrm{N}-\mathrm{Au}-\mathrm{P}$ | 178.21 (9) | C11-C9-C14 | 119.0 (3) |
| $\mathrm{Cl}-\mathrm{N}-\mathrm{Au}$ | 128.0 (3) | $\mathrm{O} 2-\mathrm{C} 10-\mathrm{Cl} 3$ | 120.8 (4) |
| $\mathrm{C} 1-\mathrm{N}-\mathrm{H} 1$ | 111 (3) | $\mathrm{O} 2-\mathrm{C} 10-\mathrm{Cl} 2$ | 121.3 (4) |
| $\mathrm{Au}-\mathrm{N}-\mathrm{Hl}$ | 122 (3) | $\mathrm{Cl3}-\mathrm{Cl} 0-\mathrm{Cl2}$ | 117.9 (3) |
| $\mathrm{N}-\mathrm{C} 1-\mathrm{C} 2$ | 119.7 (3) | C12-C11-Cl | 119.2 (3) |
| $\mathrm{N}-\mathrm{Cl}-\mathrm{Cl1}$ | 123.6 (3) | C12- $\mathrm{Cl} 1-\mathrm{C} 9$ | 120.0 (3) |
| $\mathrm{C} 2-\mathrm{Cl}-\mathrm{Cl1}$ | 116.7 (3) | $\mathrm{Cl}-\mathrm{Cl}-\mathrm{C} 9$ | 120.8 (3) |
| C3-C2-C1 | 122.1 (4) | C4-C12-C11 | 121.6 (3) |
| C2-C3-C4 | 121.0 (4) | C4-C12-Cl0 | 117.0 (3) |
| C12-C4-C3 | 119.4 (4) | C11-C12-C10 | 121.4 (3) |
| $\mathrm{Ol}-\mathrm{C} 9-\mathrm{Cl1}$ | 123.1 (3) | $\mathrm{Cl} 4-\mathrm{Cl} 3-\mathrm{Cl} 0$ | 120.3 (3) |
| $\mathrm{O1}-\mathrm{C} 9-\mathrm{Cl} 4$ | 117.9 (3) | C13-C14-C9 | 121.3 (3) |

Crystal decay was checked during the data reduction and no decay was observed. The structure was solved by direct methods. H atoms were found from the difference Fourier synthesis and refined in the isotropic approximation. The largest peak in the difference electron-density map was found at a distance of $0.94 \AA$ from the Au atom.

Data collection: SMART (Siemens, 1995a). Cell refinement: SAINT (Siemens, 1995b). Data reduction: SAINT. Program(s) used to solve structure: SHELXS86 (Sheldrick, 1990). Program(s) used to refine structure: SHELXL93 (Sheldrick, 1993). Molecular graphics: SHELXTL (Sheldrick, 1994). Software used to prepare material for publication: SHELXTL.

This work was supported by the Russian Foundation for Basic Research (project 95-03-08616a) and The Royal Society (UK).

[^0]
## References

Almlöf, J., Kvick, Å. \& Olovsson, I. (1971). Acta Cryst. B27, 12011208.

Almond, P., Cutbush, S. D., Islam, S. A., Kuroda, R., Neidle, S., Gandecha, B. M. \& Brown, J. R. (1983). Acta Cryst. C39, 627630.

Foitzik, J. K. \& Paulus, H. (1986). Mol. Cryst. Liq. Cryst. Lett. Sect. 3, 15-21.
Kolb, A., Bissinger, P. \& Schmidbaur, H. (1993). Inorg. Chem. 32, 5132-5135.
Kuz'mina, L. G. (1992). Metalloorg. Khim. 5, 744-781.
Kuz'mina, L. G., Burtseva, O. Yu., Dvortsova, N. V. \& Porai-Koshits, M. A. (1989). Metalloorg. Khim. 2, 1242-1247.

Kuz'mina, L. G., Burtseva, O. Yu., Dvortsova, N. V., Porai-Koshits, M. A. \& Smyslova, E. I. (1990). Koord. Khim. 16, 70-74.

Kuz'mina, L. G., Dvortsova, N. V., Porai-Koshits, M. A., Smyslova, E. I., Grandberg, K. I. \& Perevalova, E. G. (1989). Metalloorg. Khim. 2, 1344-1350.
Perevalova, E. G., Struchkov, Yu. T., Kravtsov, D. N., Kuz'mina, L. G., Smyslova, E. I., Grandberg, K. I., Kalinina, O. N., Dyadchenko, V. P. \& Voevodskaya, T. I. (1988). Zh. Obshch. Khim. 58, 62-71.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
Sheldrick, G. M. (1994). SHELXTL. Release 5. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Siemens (1995a). SMART. Version 4.050. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Siemens (1995b). SAINT. Version 4.050. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Acta Cryst. (1998). C54, 214-217

# 3-( $\boldsymbol{\eta}^{\mathbf{3}}$-Allyl)-3,3-dicarbonyl-4-(dimethyl sulfido)-3,1,2-molybdadicarba-closododecaborane(12) 

Kield Johansen, Georgina M. Rosair, Andrew S. Weller and Alan J. Welch<br>Department of Chemistry, Heriot-Watt University, Riccarton, Edinburgh EH14 4AS, Scotland. E-mail: chegmr@bonaly. hw.ac.uk

(Received 22 May 1997; accepted 22 August 1997)

## Abstract

The title charge-compensated allyl carbamolybdaborane $3-\left(\eta^{3}-\mathrm{C}_{3} \mathrm{H}_{5}\right)-3,3-(\mathrm{CO})_{2}-4-\mathrm{SMe}_{2}-3,1,2$-closo $-\mathrm{MoC}_{2} \mathrm{~B}_{9} \mathrm{H}_{10}$, or $\left[\mathrm{Mo}\left(\mathrm{C}_{3} \mathrm{H}_{5}\right)\left(\mathrm{C}_{4} \mathrm{H}_{16} \mathrm{~B}_{9} \mathrm{~S}\right)(\mathrm{CO})_{2}\right]$, has been synthesized and its solid-state structure determined. In the solid state, the conformation of the $\left\{\operatorname{Mo}\left(\eta^{3}-\mathrm{C}_{3} \mathrm{H}_{5}\right)(\mathrm{CO})_{2}\right\}$ fragment is such that the carbonyl ligands are approximately trans to the cage C atoms and the conformation of the allyl group is exo.

## Comment

We are currently interested in the syntheses and stereochemistries of charge-compensated carbametallaboranes derived from 9-SMe ${ }_{2}-7,8$-nido $-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{\mathrm{LI}}$ (carb' H ) (Plesek et al., 1978; Cowie et al., 1988) and its analogues (Rosair et al., 1997). These investigations have included the preparation of compounds in which the carb' ligand (i.e. deprotonated carb' H ) is bound to $\{M L\},\left\{M L_{2}\right\}$ and $\left\{M L_{3}\right\}$ fragments (Douek \& Welch, 1993). We report here an example of such a metal complex, (I), of carb ${ }^{\prime}$ with an $\left\{M L_{4}\right\}$ fragment, $\left\{\operatorname{Mo}\left(\eta^{3}-\right.\right.$ $\left.\left.\mathrm{C}_{3} \mathrm{H}_{5}\right)(\mathrm{CO})_{2}\right\}$.

(I)

The molecule 3-( $\left.\eta^{3}-\mathrm{C}_{3} \mathrm{H}_{5}\right)$-3,3-(CO) $)_{2}-4-\mathrm{SMe}_{2}-3,1,2-$ closo- $\mathrm{MoC}_{2} \mathrm{~B}_{9} \mathrm{H}_{10}$ crystallized with no imposed symmetry. A perspective view of the compound showing the numbering scheme adopted is presented in Fig. 1.


Fig. 1. Perspective view of compound (I) with $40 \%$ probability displacement ellipsoids, except for H atoms, which have artificial radii of $0.1 \AA$ for clarity. B11 is antipodal to B4 and B12 is antipodal to Cl .

Compound (I) displays the expected closo molecular architecture, as predicted by empirical electroncounting rules (Wade, 1976). The cage $\mathrm{C}-\mathrm{C}$ connectivity is 1.595 (9) $\AA$ in length, which is essentially the same as that found in $3,3,3-(\mathrm{CO})_{3}-4-\mathrm{SMe}_{2}-3,1,2-$ closo $-\mathrm{MnC}_{2} \mathrm{~B}_{9} \mathrm{H}_{10}$ [1.585 (3) $\AA$; Cowie et al., 1990]. The $\mathrm{Cl}-\mathrm{B} 4$ connectivity is 1.666 (9) $\AA$ in length, showing no lengthening compared with the other

C-B connectivities, which range from 1.653 (12) to 1.738 (9) A. The B-B connectivities lie in the range 1.746 (13)-1.808 (11) $\AA$. The Mo- $\mathrm{C}_{\text {cage }}$ distances of 2.414 (6) and $2.407(6) \AA$ for Mo3-C1 and Mo3-C2, respectively, are marginally shorter than those in the analogous charge-compensated dimethylsubstituted carbamolybdaborane $3-\left(\eta^{3}-\mathrm{C}_{3} \mathrm{H}_{5}\right)-3,3-(\mathrm{CO})_{2}-$ 8 - $\mathrm{OEt}_{2}-1,2-\mathrm{Me}_{2}-3,1,2$-closo- $\mathrm{MoC}_{2} \mathrm{~B}_{9} \mathrm{H}_{10}$, (II) [2.436 (3) and 2.484 (3) A; Mullica et al., 1994]. The Mo-B lengths are 2.417 (8), 2.379 (8) and 2.445 (9) $\AA$ for bonds involving atoms $\mathrm{B} 4, \mathrm{~B} 7$ and B 8 , respectively. The allyl fragment is bound symmetrically to the Mo atom [C33-C34 1.40 (2) and C34-C35 1.39 (2) Å] and adopts an exo conformation, as found in compound (II) and also in the cyclopentadienyl analogue $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Mo}(\mathrm{CO})_{2}\left(\eta^{3}-\mathrm{C}_{3} \mathrm{H}_{5}\right)$, (III) (Faller et al., 1980). The $\left\{\mathrm{Mo}\left(\eta^{3}-\mathrm{C}_{3} \mathrm{H}_{5}\right)(\mathrm{CO})_{2}\right\}$ fragment adopts a conformation in which the carbonyl ligands are approximately trans to the cage C atoms and cis to B4, B7 and B8. Such a conformation is expected and has been rationalized in terms of the frontier molecular orbitals of the carb' fragment (Douek \& Welch, 1993). The Mo- $\mathrm{C}_{\text {allyl }}$ lengths of 2.337 (8), 2.221 (9) and 2.334 (10) Å for bonds involving C33, C34 and C35, respectively, are similar to the corresponding distances found in (II) [2.342 (4), 2.234 (4) and 2.365 (4) $\AA$ ] and (III) [2.359 (3), 2.236 (4) and 2.359 (3) Å]. Likewise, the Mo- $\mathrm{C}_{\text {carbonyl }}$ lengths of 1.904 (9) and 1.929 (9) A for Mo3-C31 and Mo3-C32, respectively, are similar to those found in (II) $[1.905$ (3) and 1.941 (3) $\AA$ ] and that in (III) $[1.951$ (3) $\AA$ A].

Previously, the twist of the appended $\mathrm{SMe}_{2}$ group has been described by the parameter $\tau$ (Hamilton \& Welch, 1991). For the free carb' H ligand and its uncrowded metalla derivatives, $\tau$ adopts low values ( -3 to $-21^{\circ}$; Douek \& Welch, 1993), with the S-atom lone pair orientated towards the cage carbon H atom. In compound (I), $\tau$ has a value of $-34.4^{\circ}$, which


Fig. 2. View of the intermolecular hydrogen bonding in compound (I), between two molecules related by a centre of inversion. Mo3A is obtained from Mo3 by application of the operation ( $1-x,-y$, $2-z$ ).
is significantly different to those in other systems. In the absence of severe steric congestion in the molecule, we ascribe the larger twist of the $\mathrm{SMe}_{2}$ group to an intermolecular interaction of $2.422(10) \AA$ between $\mathrm{H} 42 B$ and O 31 ; $\mathrm{C} 42-\mathrm{H} 42 B \cdots \mathrm{O} 31 A 153.2$ and $\mathrm{C} 31 A-$ $\mathrm{O} 31 A \cdots \mathrm{H} 42 B 171.2^{\circ}$ (atoms with labels appended by $A$ are at $1-x,-y, 2-z$ ) (Fig. 2).

Taken as a whole, this result further underlines the analogous relationship between the ligands [carb'] ${ }^{-}$and $\left[\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right]^{-}$. It also provides a suitable reference point for the discussion of the structures of analogues of compound (I) that are substantially more crowded (Dunn et al., 1998).

## Experimental

9-SMe ${ }_{2}-7,8$-nido- $\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{11}(100 \mathrm{mg}, 0.51 \mathrm{mmol})$ was deprotonated with NaH ( 60 mg , excess) in THF ( 20 ml ) for 1 h and left to settle. The resulting solution was decanted via syringe into a cooled ( 273 K ) solution of $\mathrm{MoBr}(\mathrm{NCMe})_{2}\left(\eta^{3}-\mathrm{C}_{3} \mathrm{H}_{5}\right)(\mathrm{CO})_{2}$ ( $180 \mathrm{mg}, 0.51 \mathrm{mmol}$ ) in THF ( 10 ml ) and stirred for 2 h . The solvent was removed and the residue redissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ( 10 ml ). Filtration through Celite afforded an orange-brown solution which was then passed through a short silica plug ( 5 cm ) to afford a bright yellow solution of 3- $\left.\eta^{3}-\mathrm{C}_{3} \mathrm{H}_{5}\right)-3,3-$ (CO) $2_{2}-4-\mathrm{SMe}_{2}-3,1,2$-closo- $\mathrm{MoC}_{2} \mathrm{~B}_{9} \mathrm{H}_{10}$, (I). Recrystallization from light petroleum ( $333-353 \mathrm{~K}$ )/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ gave pale yellow microcrystals ( $105 \mathrm{mg}, 54 \%$ ). $\mathrm{C}_{9} \mathrm{H}_{21} \mathrm{~B}_{9} \mathrm{MoO}_{2} \mathrm{~S}$ requires 27.9 C, $5.44 \% \mathrm{H}$; analysis found $27.8 \mathrm{C}, 5.49 \% \mathrm{H} .{ }^{\prime} \mathrm{H}$ FT-NMR ( $200 \mathrm{MHz}, \mathrm{TMS}$ ): $\delta=1.43\left[d d, 1 \mathrm{H}, \mathrm{H}_{\text {anii }}, J(\mathrm{HH})=10,3 \mathrm{~Hz}\right]$, $1.48\left[d d, 1 \mathrm{H}, \mathrm{H}_{\text {anti }}, J(\mathrm{HH})=11,2 \mathrm{~Hz}\right], 1.94(b r, 1 \mathrm{H}, \mathrm{CH})$, $2.50(s, 3 H, S M e), 2.93(s, 3 H, S M e), 3.07\left[d d d, 1 H, H_{s: n}\right.$, $J(\mathrm{HH})=7,3,2 \mathrm{~Hz}], 3.17(b r, 1 \mathrm{H}, \mathrm{CH}), 3.60\left[d d d, 1 \mathrm{H}, \mathrm{H}_{\mathrm{syn}}\right.$, $J(\mathrm{HH})=7,2,2 \mathrm{~Hz}], 3.90$ p.p.m. [dddd, $1 \mathrm{H}, \mathrm{H}_{\text {central }}, J(\mathrm{HH})=$ $11,10,7,7 \mathrm{~Hz}] .{ }^{11} \mathrm{~B}-\left\{{ }^{1} \mathrm{H}\right\}$ FT-NMR ( $128.4 \mathrm{MHz}, \mathrm{BF}_{3} . \mathrm{Et}_{2} \mathrm{O}$ ): $\delta=-1.16(1 \mathrm{~B}),-3.17(1 \mathrm{~B}),-4.29(1 \mathrm{~B}),-7.63(1 \mathrm{~B}),-8.88$ (2B), -15.41 (1B), -16.81 (1B), -18.38 p.p.m. (1B). IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): 1953,1938 \mathrm{~cm}^{-1}$. NMR spectra were recorded on Brüker DPX400 and AC200 spectrometers, from $\mathrm{CDCl}_{3}$ solutions at 293 K .

## Crystal data

$\left[\mathrm{Mo}\left(\mathrm{C}_{3} \mathrm{H}_{5}\right)\left(\mathrm{C}_{4} \mathrm{H}_{16} \mathrm{~B}_{9} \mathrm{~S}\right)-\right.$
$\left.(\mathrm{CO})_{2}\right]$
$M_{r}=386.55$
Monoclinic
$P 2_{1} / n$
$a=6.9732(11) \AA$
$b=25.252(3) \AA$
$c=9.6780(11) \AA$
$\beta=93.386(10)^{\circ}$
$V=1701.2(4) \AA^{3}$
$Z=4$
$D_{x}=1.509 \mathrm{Mg} \mathrm{m}^{-3}$
$D_{m}$ not measured

## Data collection

$\begin{array}{ll}\text { Siemens } P 4 \text { diffractometer } & \begin{array}{l}R_{\text {int }}=0.085 \\ \omega \text { scans }\end{array} \\ \theta_{\text {max }}=25^{\circ}\end{array}$

Absorption correction:
semi-empirical via $\psi$
scans (Siemens, 1994)
$T_{\text {min }}=0.680, T_{\text {max }}=0.801$
4059 measured reflections
2975 independent reflections
1817 reflections with
$I>2 \sigma(I)$

## Refinement

Refinement on $F^{2}$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.048$
$w R\left(F^{2}\right)=0.141$
$S=1.030$
2973 reflections
199 parameters
H atoms constrained
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.039 P)^{2}\right.$
$+0.5738 P]$
where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$
$h=-1 \rightarrow 8$
$k=-1 \rightarrow 30$
$l=-11 \rightarrow 11$
3 standard reflections every 97 reflections intensity decay: $2.10 \%$

Table 1. Selected geometric parameters $\left(\AA,^{\circ}\right)$

| Mo3-C1 | $2.414(6)$ | B4-B8 | $1.756(11)$ |
| :--- | :--- | :--- | ---: |
| Mo3-C2 | $2.407(6)$ | B4-B9 | $1.771(11)$ |
| Mo3-C31 | $1.904(9)$ | B5-B6 | $1.771(11)$ |
| Mo3-C32 | $1.929(9)$ | B5-B9 | $1.778(11)$ |
| Mo3-C33 | $2.337(8)$ | B5-B10 | $1.774(11)$ |
| Mo3-C34 | $2.221(9)$ | B6-B10 | $1.764(11)$ |
| Mo3-C35 | $2.334(10)$ | B6-B11 | $1.772(13)$ |
| Mo3-B4 | $2.417(8)$ | B7-B8 | $1.808(11)$ |
| Mo3-B7 | $2.379(8)$ | B7-B11 | $1.807(11)$ |
| Mo3-B8 | $2.445(9)$ | B7-B12 | $1.787(12)$ |
| S4-C41 | $1.795(8)$ | B8-B9 | $1.798(12)$ |
| S4-C42 | $1.831(7)$ | B8-B12 | $1.799(12)$ |
| S4-B4 | $1.927(8)$ | B9-B10 | $1.768(10)$ |
| C1-C2 | $1.595(9)$ | B9-B12 | $1.755(11)$ |
| C1-B4 | $1.666(9)$ | B10-B11 | $1.773(10)$ |
| C1-B5 | $1.706(9)$ | B10-B12 | $1.775(13)$ |
| C1-B6 | $1.738(9)$ | B11-B12 | $1.746(13)$ |
| C2-B6 | $1.737(10)$ | C31-O31 | $1.179(11)$ |
| C2-B7 | $1.653(12)$ | C32-O32 | $1.161(11)$ |
| C2-B11 | $1.702(10)$ | C33-C34 | $1.40(2)$ |
| B4-B5 | $1.774(10)$ | C34-C35 | $1.39(2)$ |
| C31-Mo3-C32 | $75.7(5)$ | C41-S4-C42 | $98.8(4)$ |
| C34-Mo3-C35 | $35.5(5)$ | C41-S4-B4 | $101.7(4)$ |
| C34-Mo3-C33 | $35.5(4)$ | C42-S4-B4 | $108.0(3)$ |

The cage H atoms were constrained to idealized positions ( B H 1.10 and $\mathrm{C}-\mathrm{H} 1.15 \AA$ ), as were the allyl H atoms ( $\mathrm{C} 34-$ $\mathrm{H} 34 A 0.98 \AA$; methylide, e.g. $\mathrm{C} 33-\mathrm{H} 33 \mathrm{~A}, 0.97 \AA$ ) and the methyl H atoms ( $\mathrm{C}-\mathrm{H} 0.96 \AA$ ). All H -atom positions were calculated. The isotropic displacement parameter of each cage H atom was defined as $1.2 U_{\text {iso }}$ of the bound cage atom. For allyl H atoms, $U_{\text {iso }}=1.2 U_{\text {iso }}$ (bound C), and for methyl H atoms, $U_{\text {iso }}=1.5 U_{\text {iso }}$ (bound C). The largest feature in the difference map is $1.70 \AA$ from Mo3 and $1.39 \AA$ from C32.
Data collection: XSCANS (Siemens, 1994). Cell refinement: XSCANS. Data reduction: XSCANS. Program(s) used to solve structure: SHELXTLPC (Sheldrick, 1994). Program(s) used to refine structure: SHELXTLPC. Molecular graphics: SHELXTL/PC. Software used to prepare material for publication: SHELXTL/PC.

We thank the EPSRC for provision of postdoctoral fellowships (ASW and GMR), the ERASMUS schol-
arship and university exchange programme (KJ) and the Callery Chemical Company for a generous gift of $\mathrm{B}_{10} \mathrm{H}_{14}$.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: AB1502). Services for accessing these data are described at the back of the journal.

## References

Cowie, J., Hamilton, E. J. M., Laurie, J. C. V. \& Welch, A. J. (1988). Acta Cryst. C44, 1648-1650.
Cowie, J., Hamilton, E. J. M., Laurie, J. C. V. \& Welch, A. J. (1990). J. Organomet. Chem. 394, 1-13.

Douek, N. L. \& Welch, A. J. (1993). J. Chem. Soc. Dalton Trans. pp. 1917-1925, and references therein.
Dunn, S., Rosair, G. M., Weller, A. S. \& Welch, A. J. (1998). In preparation.
Faller, J. W., Chodosh, D. F. \& Katahira, D. (1980). J. Organomet. Chem. 187, 227-231.
Hamilton, E. J. M. \& Welch, A. J. (1991). Polyhedron, 10, 471-476.
Mullica, D. F., Sappenfield, E. L., Stone, F. G. A. \& Wollam, S. F. (1994). Organometallics, 13, 157-166.

Plesek, J., Janousek, Z. \& Hermanek, S. (1978). Collect. Czech. Chem. Commun. 43, 2862-2868.
Rosair, G. M., Weller, A. S., Welch, A. J. \& Zahn, S. K. (1997). J. Organomet. Chem. 536, 229-308.
Sheldrick, G. M. (1994). SHELXTLPC. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Siemens (1994). XSCANS. X-ray Single Crystal Analysis System. Version 2.1. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Wade, K. (1976). Adv. Inorg. Chem. Radiochem. 18, 1-66.

Acta Cryst. (1998). C54, 217-219

# Bis[di-2-pyridylmethanediolato(1-)$N, O, N^{\prime}$ ]cobalt(III) Perchlorate Trihydrate 

Ming-Liang Tong, ${ }^{a}$ Guang Yang, ${ }^{a}$ Xiao-Ming Chen ${ }^{a}$ and Seik Weng NG ${ }^{b}$<br>${ }^{a}$ Department of Chemistry, Zhongshan University, Guangzhou 510275, People's Republic of China, and ${ }^{b}$ Institute of Postgraduate Studies and Research, University of Malaya, 50603 Kuala Lumpur, Malaysia. E-mail: cedc03@zsu.edu.cn

(Received 27 August 1997; accepted 10 October 1997)

## Abstract

In the title compound, $\left[\mathrm{Co}\left(\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{~N}_{2} \mathrm{O}_{2}\right)_{2}\right] \mathrm{ClO}_{4} \cdot 3 \mathrm{H}_{2} \mathrm{O}$, the metal atom is $N, O, N^{\prime}$-chelated by the two di-2pyridylmethanediolato anions with distorted octahedral $\mathrm{CoN}_{4} \mathrm{O}_{2}$ geometry. The $\mathrm{Co}-\mathrm{O}$ bonds [1.876(1) and 1.879 (1) A] are cis to each other.

## Comment

Di-2-pyridyl ketone undergoes hydrolysis when reacted with transition metal ions to form polynuclear di-2pyridyl ketal complexes (Byers et al., 1985; Wang et al., 1986). The diol can be deprotonated and in complexes, the anion binds through the $\mathrm{N}, \mathrm{O}$ and $\mathrm{N}^{\prime}$ atoms (Baggio et al., 1993; Deveson et al., 1996; Tangoulis et al., 1996). The title complex, (I), which has the Co atom in the +3 oxidation state, was obtained in an attempt to prepare a cobalt(II) complex containing di-2-pyridyl ketone and betaine ligands.


The complex consists of discrete monomeric cations, perchlorate anions and lattice water molecules. The $\mathrm{Co}^{\text {III }}$ atom is surrounded by four N atoms and two O atoms of the two tridentate ligands in a distorted octahedral $\mathrm{CoN} \mathrm{N}_{4} \mathrm{O}_{2}$ arrangement, with the greatest distortion from octahedral geometry being displayed by the angles N1-$\mathrm{Col}-\mathrm{N} 4$ and $\mathrm{O} 3-\mathrm{Col}-\mathrm{N} 4$. The $\mathrm{Co}-\mathrm{N}$ bond lengths [1.929 (1)-1.944 (1) $\AA$ ] are similar to those (1.994$2.098 \AA$ ) found in the di-2-pyridyl ketal complexes of nickel(II) and copper(II) reported by Wang et al. (1986). In these complexes, the pair of metal-oxygen bonds are in a trans alignment. On the other hand, the $\mathrm{Co}-\mathrm{O}$ bonds in the title complex are mutually cis; thus, the title complex presents an unusual mode of binding of this tridentate ligand to a metal centre.

The structure is consolidated by an extensive threedimensional hydrogen-bonding network which involves the lattice water molecules, the hydroxy groups of the


Fig. 1. ORTEPII (Johnson, 1976) plot of the title cation with $35 \%$ probability displacement ellipsoids. H atoms bonded to C atoms are not included.


[^0]:    Supplementary data for this paper are available from the IUCr electronic archives (Reference: BM1166). Services for accessing these data are described at the back of the journal.

